您现在的位置:文学网 > 西方诗歌

数学七年级下册:《简单的旋转作图》教案(鲁教版)

时间:2019-07-13 08:40   编辑:本站

数学七年级下册:《简单的旋转作图》教案(鲁教版)

[例1]如图,△ABC绕O点旋转后,顶点A的对应点为点D,试确定顶点B、C对应点的位置,以及旋转后的三角形.分析:一般作图题,在分析如何求作时,都要先假设已经把所求作的图形作出来,然后再根据性质,确定如何操作.假设顶点B、C的对应点分别为点E、点F,则∠BOE、∠COF、∠AOD都是旋转角.△DEF就是△ABC绕点O旋转后的三角形.根据旋转的性质知道:经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,即旋转角相等,对应点到旋转中心的距离相等,则∠BOE=∠COF=∠AOD,OE=OB,OF=OC,这样即可求作出旋转后的图形.[师]通过分析知道如何作出△DEF,现在大家拿出直尺和圆规,我们共同来把这一旋转后的图形作出来,要注意把痕迹保留下来.(教师一边叙述,板书作法,一边强调正确使用直尺、圆规,同时作图;学生作图)解:(1)连接OA、OD、OB、OC.(2)如下图,分别以OB、OC为一边作∠BOE、∠COF,使得∠BOE=∠COF=∠AOD.(3)分别在射线OE、OF上截取OE=OB、OF=OC.(4)连接EF、ED、FD.△DEF,就是△ABC绕O点旋转后的图形.[师]同学们画得很好,大家想一想,分组讨论:本题还有没有其他作法,可以作出△ABC绕O点旋转后的图形△DEF吗?(同学们讨论、归纳)[生甲]可以先作出点B的对应点E,连结DE,然后以点D、E为圆心,分别以AC、BC为半径画弧,两弧交于点F,连结DF、EF,则△DEF就是△ABC绕点O旋转后的图形.[生乙]也可以先作出点C的对应点F,然后连结DF.因为△ABC与△DEF全等,所以既可以用两边夹角,也可以用两角夹边,找到点B的对应点E,即△DEF.[师]同学们讨论得非常精彩.方法多种多样,很好.接下来,大家来想一想(出示投影片§)在旋转过程中,确定一个三角形旋转后的位置,除需要此三角形原来的位置外,还需要什么条件?[生丙]还需要知道绕哪个点旋转,旋转的角度是多少?[生丁]就是要知道旋转中心和旋转角.[师]很好,由此我们可以知道,要确定一个三角形旋转后的位置的条件为:(1)三角形原来的位置.(2)旋转中心.(3)旋转角.这三个条件缺一不可.只有这三个条件都具备,我们才能准确地找到一个三角形绕点旋转后的位置,进而作出它旋转后的图形.下面我们来通过练习进一步熟悉简单平面图形旋转后的图形的作法.Ⅲ.课堂练习(一)课本随堂练习.在下图中,将大写字母N绕它右下侧的顶点按顺时针方向旋转90°,作出旋转后的图案.解:如下图,先确定字母N的四个端点绕它右下侧的顶点按顺时针方向旋转90°后的位置,然后连线.(二)看课本然后小结.Ⅳ.课时小结本节课我们通过作平面图形旋转后的图形,进一步理解了旋转的性质,并且还知道要确定一个三角形旋转后的位置,需要有:①此三角形原来的位置.②旋转中心.③旋转角等三个条件.在作图时,要正确运用直尺和圆规,进而准确作出旋转后的图形.要注意语言的表达.Ⅴ.课后作业(一)课本习题、2.(二)1.预习内容.2.预习提纲.探索图形之间的变换关系.Ⅵ.活动与探究在五边形ABCDE中,AB=AE、BC+DE=CD,∠ABC+∠AED=180°.求证:AD平分∠CDE.过程:让学生分析、讨论.要证:AD平分∠CDE.则需证∠ADC=∠ADE.而∠ADC是在四边形ABCD中,∠ADE是在△ADE中,且已知:BC+DE=CD、AB=AE、∠ABC+∠AED=180°,这时想到,连结AC,将四边形ABCD分成两个三角形,把△ABC绕A点旋转∠BAE的度数到△AEF的位置,这时可知D、E、F为一直线,且△ADC与△ADF是全等的,因此命题即可证得.结果:如图,连结AC,将△ABC绕点A旋转∠BAE的度数到△AEF的位置,因为AB=AE,所以AB与AE重合.因为∠ABC+∠AED=180°,且∠AEF=∠ABC,所以∠AEF+∠AED=180°.所以D、E、F三点在一直线上,AC=AF,BC=EF.在△ADC与△ADF中DF=DE+EF=DE+BC==AC,AD=AD所以,△ADC≌△ADF(SSS)因此,∠ADC=∠ADF即:AD平分∠CDE.七.板书设计§简单的旋转作图一、旋转作图的方法例1(旋转作图)二、确定一个三角形旋转后的位置的条件三、课堂练习四、课时小结五、课后作业。